A Simulation Framework for the I nvestigation of
Adaptive Behavioursin Largely Populated Building
Evacuation Scenarios

Daniele Gianni, Georgios Loukas, Erol Gelenbe

Department of Electrical and Electronic Engineering
Imperial College London
SW?7 2BT, London, UK
{gianni, gl1, e.gelenbe}@imperial.ac.uk

Abstract. In an emergency scenario, civilians and emerggecgonnel have to
continuously adapt their behaviour and make quidcigions to tackle
unpredicted developments. Determining the optimatisions and devising
viable operational plans, while adapting to worltheges, require systematic
and accurate investigation of such systems. Toctffdy carry out such
investigations in largely populated scenarios, wedha software framework
that allows (i)reproducibility of the experiments, (ii) extendibility to diverse
and unforeseen scenarios and (iigtributed operation to allow the simulation
of largely populated scenarios. We achieve allgheguirements by developing
an agent-based discrete-event simulation frameveordt,then building on top a
Building Evacuation Smulator (BES), according to modern software
engineering practices.

Keywords. Building Evacuation, Simulation, Software Framework
Adaptation, Multi-Agent System.

1 Introduction

The characteristics of the individuals involved im @mergency and the way their
behaviours adapt in response to changes of theiruding conditions, have a
dramatic impact on the outcome of a rescue operatiprSpecifically, in a building
emergency scenario, the routes through which cnsliwill be directed towards the
external points of collection, and the allocatidrrescuers and firemen, are some of
the critical decisions that must be made in real-tifteese decisions will have to
continuously be adapted to unpredicted developmsuts as the spreading of a fire,
the delayed propagation of information due to fawdynmunication infrastructure,
and the congestion in stairwells. Techniques for gaic#t optimal decision making
have been developed for these purposes, such as [#iislpaper, we tackle the
challenge of designing a simulation tool that combireproducibility of experiments
with a high level of flexibility for a broad scopd models and scenarios. The
Building Evacuation Smulator (BES) allows easy configuration of the simulated
model and rapid incorporation of new components ¢hatbe locally developed and

then transparently deployed in either local or disted environment, in close
analogy with the simulation framewogmJ [3] [4].

The remaining of the paper is organised as follows. &t with a quick
summary of existing state-of-the-art contributions atehtify their differences with
our work. We continue with the description of thengiated model and the details of
the simulator framework. Then, we show how to incosp® new models in our
framework and present a preliminary validation & BES with a simple evacuation
scenario in a building with four floors and three rstails. We conclude with a
summary of our contributions and the work we planamycout in the near future.

2 Related Work

The application of agent technologies to the studgneergency situation is not new.
DrillSim [5], the simulator of human and social beioar in emergency evacuation
[6], and the simulator for crisis management [7]padisent state-of-the-art simulation
platforms for building evacuation in emergency dituss.

DrillSim [5] differs from the BES mainly at its schidity and reusability. The
scalability is reduced because the simulator is based on a lggsdraimulation
engine that runs only in local environment. Diffeéhgnthe BES enables the use of
distributed environment, and therefore offers a higltegree of scalability. DrillSim
also presents a reduceeusability. This is due to the structure of the simulation
engine and the configurability of the actors in #oenario. The simulation engine
includes the simulated geographic space, the evanustenario, and the agents. By
such design approach, the switching to another impitatien simulation engine that
might perform better for the given simulation woikdly requires considerable
reworks. The agents also present limited configutghii terms of decision, motion
and health models because their characteristics caspdafied only through the
parameters of the hard-coded models. Differently,BES adopts a very modular
architecture. It is horizontally based on the layeaechitecture SimArch and the
principle of separation of concerns which maintainsssted the parameters that do
not affect the behavioural logic of the agents, fithi logic itself. By this approach,
the BES gains: i) the transparent use of the diffesanulation engine with no extra
effort, such as distributed in the place of a log#,di) the development and testing
of new agents locally before the deployment in thstributed environment, and iii)
the testing and parameterisation of new models anchisption algorithms.

Finally, both Drill[Sim and BES are augmented readitjwulators but in different
manner. We have already presented such results arghdsons in [8].

The framework presented in [6] differs from the BBSthe grid-based modelling
approach of the space, which does not scale very foellarge areas, for the
execution in local environment only, and for the @Bualisation that our simulator
does not currently provide. Moreover, the two cdmitions have complementary
scopes. Indeed, the work presented here provides aaférenework within which
one can implement all the modelling aspects defing@]in

Finally, the authors of [7] concentrate on the nil of the social interactions,
while we focus on the architecture of the simulatimmework. In addition, their
contribution uses rule-based reasoning and decisakifg, which cannot scale in a
distributed environment and are computationally denmandeven in a local
environment. Thanks to its modular architecture, BBS effectively incorporate the
reasoning and decision-making modelling that they us§d].i

3 Simulated M od€

In a typical building evacuation scenario, the aiavolved are the civilians who
evacuate the building, the rescuers who collect égjuivilians and the firemen who
try to extinguish the fire. Following the agent mhgm [9], they need to be
independent and intelligent enough to individuagcide which resources to use, and
how to cooperate or compete for their use. Thesesidasi depend on both their
internal objectives and the state of their exterwakld. The human agents are
provided with their own personal view of the worlthd with their own decision,
motion, and health models, which collectively desetiteir status. As an extension to
the typical scenario, one may add an ongoing, dynd@méat which may exist for the
agents. Such threats are handled as hazard agent$y @dioot occupy physical
space, but affect the conditions of the simulateddydmbth the human agents and the
actual building.

The different types of agents operate on the siradlghysical world, which we
model using a set of graphs. The nodes of such & gegpesent the physicaPdints
of Interest” (Pol), while the edges represent the available pattween them. Pol
may be, for example, the physical location of a éxénguisher, a door, a desk, or the
intersection point between evacuation paths. Wheatl lpetween two locations is
blocked, this is simply represented by the loss of threesponding links or by a
prohibitive increase of the movement cost on them. fdllewed this approach,
because our focus is on largely populated scenariessithulation of which should
not be slowed down by the modelling of every litletail of the physical world that
does not effectively influence the evacuation. Aperin the reduced computational
demands, we also benefit from the several existingittigas for known graph theory
problems. For example, most actors that are familidin w&i building will use the
shortest path to reach their destination, while &seuers will have to visit all areas of
the building in the shortest possible time.

Further to the global graph, which represents thelevhbthe simulated physical
world, we use sub-graphs to define local regions. Aantig always fully aware of all
changes that occur in the local region it belongs-to. example, the nodes and the
edges modelling a room all belong to the sub-giithe same local region, because
all the agents in the room perceive every changedhaking place in it. We use sub-
graphs also for the modelling of dynamic hazards, siscthe spreading of fire in the
building. Of course, each node can belong to mone ¢im@ sub-graph, and the nodes
of the physical world may be connected with difféerbnks on their various sub-
graphs, depending on what these represent.

Finally, an important issue that is covered effagfivwith our graph-based
modelling is the effect of congestion in the chokents of the building, such as
doors, narrow corridors and staircases. Each node optsical world graph is
modelled as a server with limited capacity and a siggieue. When a human agent
arrives at a choke point, it either finds it free amdmmediately served (crosses the
node), or finds it busy and queues up. This appro#iolvsafor the integration of
more complex queuing models that have been develiopie literature, for human
beings moving through congested areas [10].

4 Simulator Framework

The simulator framework is built according to modesoftware engineering
techniques that tend to enable a model-driven appréa the development of the
simulators [11]. It is based on the architect@enArch [11] (Figure 1), which
organises the simulator software in four differenelay Simulation Model Layer (4),
Simulation Components Layer (3), Discrete Event SirmdatLayer (2), and
Distributed Discrete Event Simulation Layer (1), whishbuilt on top of thdEEE
HLA standard [12].

Layer 4 is the layer where the simulation model isnaef through the declaration
of the agents involved in the simulated scenario. Swemts are provided by Layer 3,
which in turn uses Layer 2 for communication and symmisation transparently in
both the local and distributed environment. Layemprbvides aDiscrete Event
Smulation (DES) abstraction on top of the distributed computinfastructure
conventionally identified by Layer 0. This bottonyéa does not belong to SimArch
but provides the basic services to operate in aloligéil environment.

4.1 SmJADE

SmMJADE is a simulation framework that extends the populangbased JADE
framework [13] by introducing an innovative formtiten of discrete event simulation
systems in terms of multi-agent systems [14]. The mostklwiddopted DES
paradigm is process interaction [15], which presentsynadiinities with MAS. It is
based on independent simulation entities that comrateniand synchronise their
logical time to carry out the simulation accorditogthe properties of causality and
reproducibility. A discrete event simulation systenm therefore be modelled as an
agent society with a defined ontology, compositem interaction protocol.

The simulation ontology, name®ESOntology, defines theDES concepts
(simulation time) andhctions (DES and simulation life cycle management services)
that are used as semantic base for the communicationgah®simulation agents.
The concepts defined by tB¥ES-Ontology are:

¢ AbsoluteSmulationTime
¢ RelativeSmulationTime

with “relative” having default semantic “respect t@tcurrent time”. Although these
two concepts are related by a simple linear transfoomathe definition of a relative
time concept is included in the ontology becauseh& gimulation community is
common practice to use it as parameter type in sebD&a services.

Theactions included in the ontology are of two types: sulation management
services and theDES services. Belonging to the first category are the actions to
manage the simulation life cycle:

* Register agent: to request the permission to join the simulation sgriet

* Registration successful: to acknowledge the permission in response to a
Register Agent request;

» Remove agent: to resign the society;

« Smulation end: to inform that the society objective has been redch

Whereas the second group includes:

« Conditional hold time: to request an hold for a given simulated timeessl
any even notification before it;

 Hold time: to request an unconditional hold for a specifiedudated time;

* Notify time: to inform that the specified time has been reached;

* Notify message: to inform that the specified event was requestedhieduled
for the receiving agent, at the current time;

« Send message: to request the delivery of the specified eventhatspecified
time to another simulation entity agent;

« Wait message: to request to be wake up when a simulation messagebis
notified.

The simulation agent society is composed of two typegents: simulation entity

Simulation Model Layer Layer 4

Simulation Components
Layer Layer 3

Discrete Event Simulation
Service Layer Layer 2

Distributed Discrete
Event Simulation Layer Layer 1

Distributed Computing
Infrastructure Layer 0

- T~

General Purpose Simulation
(CORBA, WS, Globus, oriented (DIS,
etc.) HLA, ALSP)

Figure 1 SimArch Architecture [11]

and simulation engine. Thsamulation entity agent incorporates the simulation logic,
i.e. the sequence of internal operations and DESceerequests, and provides to the
developers with discrete event simulation versions@ttnventional JADE services,
such as doWait and receiveMessage. With this appr&eiJADE brings a model-
driven development of the simulation system, sinceeldg@ers are provided with a
uniform interface and are not involved with theailst of the communication and
synchronisation, local or distributed [3], standardradpased or simulated agent-
based [14].

The simulation engine agent, which may be unique within the society, collects the
request and orchestrates the society according toprhygerties of causality and
reproducibility. It is available in two transpargnthterchangeable versions, local and
distributed. The distributed version is implemented lose analogy with the
framework SmJ and is based on a HLA-based implementation of layef the
SmArch architecture (Figure 1) [11].

The interaction protocol is composed of a populating phase and a serve-and-
process cycle. In the populating phase, the simulatidities register into the society
to be included in the synchronisation mechanisms. The-sard-process represents
the main cycle of the simulation where the commuivocaand synchronisation
requests are collected and processed. It relies orfatiiethat some requests are
blocking other are not; and it assumes that whileoperihg a blocking request, the
entity agent does not perform other request and vimita respective simulation
message notification. While collecting the requests, dimulation engine schedules
proper simulation event handlers to deal with sudlecuest. When the handler is
processed because the relative simulation time hasewathunblocks the entity
agent that has requested it.

4.2 Agents: Dynamicsand Models

The agents, including their dynamics and the paraimatmn, are defined at Layer
3 of the above architecture. Their design is basetherkey principle oBSeparation
of Concerns [17] that suggests designing components with a minimissdch a way
that presents features computer programs into disfeatures that overlap in
functionality as little as possible. Each agent isndef by a behavioural logic, which
specifies the interaction with the external worldda set of parameters that do not
affect the pattern of the logic, according to tresign outlines in [18]. By such
approach, the cohesion of each agent is maximisedake it reusable across the
several values the parameters might assume. A straightih, but effective,
methodology to individuate the candidate parameteraes from the analogy with
the physical agents. ResourceManager manages the world model, and the active
actors human andhazard agents, use and affect the condition of such resources.

The ResourceManager coordinates the access to the node and supports the
management of the world updates for each agent. ttardigs are structured in two
phases, a wait for an event and the processing Tiidét.expected types of events are:
WantToMoveTo and FinishedMove. When receiving aVantToMoveTo a node, the
manager checks whether the node is already occbgisdme other human agents. If

the node is busy, it enqueues the request accordirgRCFS policy, otherwise it
immediately warrants the access by sendingAathorisedToMove event. When
receiving aFinishedMove event, the manager checks whether other human agents
have requested to move on the node. In the affirmatge, the manager authorises
the movement of the first agent in the queue. In amditthe ResourceManager
regulates the updates for the agents. Knowing thdiguosif the each human agent, it
determines if a change in the world should be refteot®o the individual perception

of the world. Similarly, when a human agent moves tlifferent group of nodes or
edges, it provides the updated condition for alltbdes and edges concerning that
group.

The human agents are provided with their own personal view of therldpand
with their own goal, motion and health models whielsdibe their status. The human
agents, which move and occupy space in the physiodd, present a behavioural
logic that is mainly composed of movements becausedaeyonly interact with the
surrounding parts of the world. Therefore, they maath the point in the space they
want to interact before performing any other typeacfions. The basic dynamic is
described by the state diagram in Figure 2.

After positioning on the initial node, the human agstate diagram proceeds with
a cycle of movements that eventually lead to thal fstate, which is either a dead
agent or the accomplished ultimate goal, such asireatie point of collection.

After having decided the goal (where to go) and howeach it, the agent enter the
Reaching the Node state in which it sends &VantToMoveTo event to the
ResourceManager through the underlying layer sesvittethus enters the state
Waiting for Movement Authorisation and remains there until the node’s
ResourceManager authorises the movement on the. Adde manager sends the
AuthorisedToMove event immediately, if the node is free, or wheneteaives a
finished movement message from the agent currently .ofhi¢ simulation time
between the notification want to move and the réoepof the authorisation is the
gueuing time at the node. The agent authoriseddopycthe node holds such position
for some simulation time before either moving to Aeotnode by starting over the
movement cycle or terminating its life if it has reaghits ultimate goal — which
generally is the external point of collection. Howgwome of the movements might
not be completed in certain conditions of the wdrtause they might require an
amount of time greater that the remaining life tiofieghe agent. To include this case,
transitions from the statefReaching the Node and Waiting for Movement
Authorisation to the end state are included.

The standard human agent dynamics might incorporai®rmusub-dynamics for
the specific type of agents present in the simulatedasicenSuch sub-dynamics,
however, take place when the agent reaches the anudlderminates with another
movement act, which leads the agent on a differedenFor example, a rescuer, who
wants to collect an injured civilian on a floor stireaches the specific point, and then
starts the specific dynamics, with which takes charfgéhe injured civilian, and
finally moves towards the exit.

From the above description, it is easy to infer whtad parameters that compose

the static structure of the human agent because daffeat the dynamics pattern are:
1) the decision of on which nodes it wants to m®)ethe travelling time between

HA dies Other Custom Dynamics

Intermediate Goal
Reaching the Node
Dynamics

Achieved
Accomplished
Node Intermediate Goal
Reached Achieved HA dies

[Standing on Initial Node)
Waiting for Movement Authorisation)

Movement
Completed

Movement on the Node

Movement
Authorized

Ultimate

HA dies

Figure 2 State Diagram of the Human Agent Basicdbyics

two nodes and the occupation time on a node,3ile life time. Such parameters
are therefore kept separated from the agent behaVilmgic and can be specified at
the time of agent instantiation by passing implemeonadt configuration time, as in
[18]. For each of them, we defined a hierarchy of clafisas can be immediately
used.

Parameter 1 depends on the agent’s personal goal and the stramgyted to
achieves it. From the software architecture pointiefv, this parameter is specified
by the goal feach a node in the graph”, which includes a destination node and a
decision model that instructs the agent on how to réadie goal is defined by the
hierarchy show in Figure 4. It can be of tyfenple or Composite, with the latter
being sub-classified int&@eguence of Goals or a set ofConcurrent Goals. The
decision model gives the directions on how to reack.mbdel is also provided with
an update function that operates as observer of thddWodel and reflects the
changes of it on the internal structure, accordinthé respective design pattern [19].
Such modular structure allows a quick modelling af thfferent types of human
agents in a possible realistic scenario. For examgiidians are provided with a
SngleGoal, which is reaching the point of collection, whileoaing dangerous paths
(with fire for example) or congested path. Diffettgn rescuers might have
ConcurrentGoals (e.g. reaching an injured civilian on floor 3,flwor 10) and might
have different strategies to reach them dependingeainknowledge of the world and
the anti-fire protections they wear.

Parameter 2 determines the time duration characteristics oflbgement time on
the edges and on the nodes. It is defined througbpeéeification of the speed values
on both elements as a function of the agent stateadkat characteristics and the
physical conditions of the node or edge, on whi@hrttovement is occurring. These
values can be constant, as in evacuation trainingse éunction of the perception of
danger in the event of real emergencies, and camdepeindividual panic condition
due to fire or other physical factors.

Parameter 3 affects the outgoing transitions betweBeaching the Node and
Waiting for Movement Authorisation. If the life time is smaller that the time needed
for the movement, the agent dynamic reaches thestatd, otherwise it proceeds
according to the above specification. This parametealso maintained updated
through the exposition time in adverse physical coouit

While moving the agent receive updates of the wavldch may change its health
status, its goals and the ways it reaches. To reduceuthber of the event and the
complexity of behavioural dynamic, the updates sest during the crossing of an
edge and when completing the movement on a nodegbmeral, the time spent on
the nodes is negligible compared to the time spentdgesand the rapidity in the
variations of the world conditions, so that the change delayed for human agents
in movement on a node.

The hazard agents, such as fire-spreading and smoke-spreading, affect the
conditions of the simulated world, but do not occipbysical space. They present a
simpler yet different simulation dynamic since theynid compete for the access to
the nodes. For their peculiarities, they constituténdependent group. The simulator
is currently provided with a fire agent, which beiloav can predetermined, with a
manual description through XML configuration files, probabilistic. In either case,
the fire intensity on each node and edge is reptedess a number between 0 and
1000, and propagates on an extended world modeirthatits the structure of the
plan and adds edges between physically adjacent ndwleseal scenarios, for
example, the fire may propagate not only throughrgl@md along corridors, which
can be traversed by human agents, but also througls waalti ceilings. The
probabilistic model is built according to the guidebnin [20] with further adaptations

«interface»
Observer

T

«interface»
Observable

DecisionModelUpdater HumanAgent Goal
:WorldModel >——
update() bl 1 1 |workTowards() : Node
KN
\/ ' \V
MotionModel HealthModel
getMotionTimeOnNode() : Time getLifeTimeOnNode(in n : Node) : Time
getMotionTimeOnEdge() : Time getLifeTimeOnEdge(in e : Edge) : Time
\wouldDieln() : Time
willBeAliveAfter(in t : Time)

Figure 3 Composition of human agents

Goal

iworkTowards() : Node

—

DecisionModel 11 | SimpleGoal CompositeGoal

GoalSelector

getNextNode() : Node

! orderGoals()
1 1
1 1 1

DecisionModelUpdater Node SequenceOfGoals ConcurrentGoals

update() 1

Figure 4 Goal's hierarchy

to include the fire intensity in the spreading dyies. For further details, please refer
to [8].

4.3 Going Distributed

The simulation of a realistic scenario involvingtisands of civilians, tens of rescuers
and firemen needs computational resource that deastt of polynomial order of the
number of simulated agents. Such resource might nawaiable on a single host,
and therefore a distributed environment is needesdféatively carry out behavioural
and adaptation studies in such systems. By the ude@imArch architecture [11],
the simulator gains a transparent deployment of ageneither local or distributed
environment. This can be indeed done by switchindaba version of the simulation
engine agent with the distributed version by the afse HLA-based implementation
of SimArch’s Layer 1, available from previous work$ [#1].

Despite of the transparent deployment of the agentstlver environment, the
distributed execution raised new modelling issues. fiimally use the distributed
environment, two major issues are to be deal withw I partition the simulated
model over the available computational resourceshamdto improve the simulator
performance through model refinements that do novilyeaffect the simulated
model.

The model is partitioned in order to exploit theimtic parallelism of independent
physical subsystems, while meeting the memory cdngdreon each host and
minimising the network workload. For instance, tivergs happening within a floor
or along stairs loosely affect the rest of the systidwerefore the simulated world is
allocated on independent single area simulatordhatbe either floor or stairs, each
running on a separate host. In addition, since thiessconstitute critical evacuation
paths which are going to be traversed by all then@gescaping the building, they
might become overcrowded with the number of ageMhtsthat case, a further
partitioning could be necessary in order to meetrieeory requirements.

A key factor for the performance of the simulatthie amount of data exchanged
between the separate simulators. In order to redude data, the world model is
locally stored and cloned for each incoming agemt then enriched with agent’s
personal knowledge. In addition, considering tha #yent executing locally can
interact only with the local world, a condensed viewthe remaining world is
adopted as compromise strategy to achieve scalabflithe simulated world and
accuracy decision making process.

5 Incorporating New Models

Separating the behavioural dynamics from the spetifin of the decision, motion
and health models brings good reusability of the dnumgent basic dynamics, which
can easily incorporate new and possibly adaptive lmodecording to the above
schema, we can define the following parameterisat@nttie civilians. They are
provided with a simple goal that consists in reachirggexternal point of collection.
The goal is achieved by computing the best pathdmtvihe current position and the
destination associated on a graph-based decision noitiellly, the graph is labelled
with the physical distance between the nodes; howehanges in the world affect
the weights according to the decision model updatection. In the case of civilian,
this function is defined by the following expression:

edge physicalLength if (edge fire=0)

weight(edge) { +oo if (edge fire>0)

The civilians’ motion model is defined as functiontleé world and individual motion
characteristics. For the floor, the speed on thegdguniformly distributed in 145 —
155 cm/s [21], and the speed on the nodes is cormtahequal to the average 150
cm/s. For the stairs, the speed on the edges redo®3 + 80 cm/s, whereas the
speed on the nodes remains the same.

The civilians’ health model life time is defined aspsfeinction. The civilian
survives until the physical conditions of the world ssahe individual threshold.
Currently, the function is taken as dependent onlythanfire level on the node or
edge being traversed:

lifeTime(edge) = {+ ” . y (edge.flre< 309

0 if (edge fire>300
A possible extension of such human agent’'s parameteitd include the modelling
of other phenomena occurring during the evacuatfoa building. For example, to
model the competition for the use of the intersecRois, the motion model could be
defined according to a different function, whichuttbbe, for instance:

nodeTime if (nodelengthOfQueue = 0)

motionTime(node) = . .
nodelengthOfQueue/10+ nodeTime if (nodelengthOfQueue > 0)

Such function indeed models the fact that the traveo§ an intersection node
deteriorates when there are collision phenomena [6].

The rescuers are defined in a similar way. Their geabenerally of type
“concurrent type”, since there can be more injurgdians at the same time. The
goal selector can be based on physical proximitgriai or decentralised optimisation
techniques based on neural networks [2].

The decision model updater is defined accordingffardint function because the
rescuers might wear protections, and therefore nailet to traverse also more hostile
sections of the building. An example of such functsn

edge physicalLength if (edge.fire=0)
weight (edge) = edge. physicalLength x (L+ edge fire/250) if (edge. fire[(0;250))
+00 if (edge. fire > 250

The motion model is defined with 170 — 180 cm/s, l@anftoor edges, and 70 — 80
cm/s on the stairs edges, when reaching injuredamgj and 100 — 120 cm/s on the
floor edges, and 50 — 70 cm/s on the stairs edges, kBeuing civilians. The speed
on the nodes is maintained the same as for the cwijlgince this parameter affects
the performance of the simulator and do not signiflgaimfluence the statistical
results of the simulator.

6 Preliminary Validation

The validation of emergency simulators is generalyy possible with direct
comparison of data from the real world, because emeygmetrics, such as the total
or average individual evacuation time, for a spedfidding often do not exist until
some disaster happens; when they happen the prioritpticollecting statistics.
However, a preliminary validation can be carried loyproperly setting the simulator
parameters in a verifiable scenario.

We can assume that in a public building with notipalarly complex structure
and populated only by employees, who are familighis layout, evacuees use the
shortest physical path to the main exit. For our valich scenario, we consider a
public building with four floors, three stairwells aadnain exit, which is the external
point of collection for evacuees. The building ipplated with 80 civilians uniformly
distributed over the four floors. The simulation isfpemned in a distributed manner
over eight federated simulators, one for each flaod stairwell, and one for the
external point of collection.

For this preliminary validation we do not considle tsocial behaviour of the
evacuees, but we assume that their motion is regotatidy, without non-adaptive
crowd behaviour, and with queuing at choke pointaghéhe only reason for them to
be delayed. The civilians’ motion parameters areasebrding to the average values
provided in [21]. The edge crossing time each timedseflore given by / s, wherel

is the physical length arglis the speed of each actor. We assume a globaltdiage
time of 0.3s for each node.

The results of our experiment after several runs shimat the average total
evacuation time is about 87s. This value is reasondtye ¢o the ideal value of 76s
that we computed using the optimistic mathematical ino@sented in [21].

As a further validation step, we tested the systembetaof the simulator by
measuring the average evacuation time for differbatations of the 80 civilians in
the four floors (Figure 5). In the first experimeixp. 1) we place 35 civilians on
floor 1, and 15 civilians in each of the other threéile in Exp. 2 we have 35
civilians on floor 2 and 15 in the others, and sd@rExp. 3 and 4. As we expected,
the closer the majority of the civilians are to thléeenal point of collection, the lower
the average evacuation time, despite the effectnofeased queuing times at
congested areas.

70
)
s
D B0 v
o Exp. 1
m (35;15;15;15)
g 501
Q Exp. 2
g (15:35;15;15)
£ 40r
- Exp. 3
9o (15;15;35;15)
® 301
§ Exp. 4
15;15;15;35
@ 20f ()
)
(=2}
@
5 10t
z
0 L I
Exp. 1 Exp. 2 Exp. 3 Exp. 4

Experiments

Figure 5 Variation of average evacuation time fffecent distribution of civilians over the
four floors

7 Conclusions

The field of disaster management and emergency respandmenefit greatly from
the use of computer simulation, both to evaluate @aténn plans, standard policies,
and decision mechanisms, and also to suggest optioigEns even during an
emergency. However, the systematic investigationeftiaptive behaviour of agents
and complex interaction with their physical surromgd in disaster scenarios
requires a software framework that alloreproducibility of experiments and rapid
extendibility to new models and scenarios. In this paper, we pezbensimulation

framework which meets these requirements, and addltjo provides transparent
deployment in both local and distributed environreent

The distributed operation of our software allows the simulation of largely
populated scenarios, and also gains better faultatoder and integration with other
simulators. As future work, we plan to make use of tieet by integrating the
Building Evacuation Smulator (BES) with a simulator of larger scope, such as the
excellent work on the Robocup Rescue (RR) [22]civideals with disasters at city-
level. We envision the agents using the RR simulaidravel across the city and
using the BES whenever they enter a building, so &sféctively simulate a disaster
at different levels of microscopy.

In this paper we presented the design of a distribaigent-based simulation
framework geared towards evaluating adaptive detisichanisms in building
evacuation scenarios. In our future work, we willger@ such adaptive mechanisms
with the use of this simulation framework.

Acknowledgements

This research was undertaken as part of the ALADDINt¢gAomous Learning
Agents for Decentralised Data and Information Systeargect and is jointly funded
by a BAE Systems and EPSRC (Engineering and Phy$teslearch Council)
strategic partnership (EP/C548051/1).

References

1. C.W. Johnson, “Lessons from the Evacuation of treltiVTrade Centre, September 11th
2001 for the Development of Computer-Based Simuteti, Journal of Cognition,
Technology and Work, vol. 7, n. 4, Nov, 2005, Springer London, pp. 21240.

2. E. Gelenbe and S. Timotheou, “Random Neural Netavarith Synchronised Interactions”,
Neural Computation, accepted for publication.

3. A. D'Ambrogio, D. Gianni, and G. lazeolla, “SimJ: Bramework to Distributed
Simulators”,Proceedings of the 2006 Summer Computer Smulation Conference (SCSC06),
Calgary, Canada, 2006, pp. 149 — 156.

4. D. Gianni and A. D’Ambrogio, “A Language to Enalidéstributed Simulation of Extended
Queueing Networks"Journal of Computer, Vol. 2, N. 4, July, 2007, Academy Publisher,
pp. 76 — 86.

5. V. Balasubramanian, D. Massaguer, S. Mehrotra, indenkatasubramanian, “Drillsim:
A simulation framework for emergency response sirillProceedings of the 2006
Conference on Intelligence and Security Informatics (IS 2006), May, 2006.

6. X. Pan, C.S. Han, K. Dauber, and K.H. Law, “A malgent based framework for the
simulation of human and social behaviors during rggerecy evacuations’Al & Soc., vol.
22, n. 2, Oct, 2007, Washington, DC, pp. 113-132.

7. Y. Murakami, K. Minami, T. Kawasoe, and T. Ishid&ulti-Agent Simulation for Crisis
Management”Proceedings of the |[EEE Workshop on Knowledge Media Networking, Jul,
2002, IEEE Computer Society, pp. 135 - 139.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Filippoupolitis, L. Hey, G. Loukas, E. Gelenbend S. Timotheou, “Emergency
Response Simulation Using Wireless Sensor NetworkRie First International
Conference on Ambient Media and Systems (Ambi-sys08), February, 2008, Quebec City,
Canada.

N.R. Jennings, and M. Wooldridge, “Application afélligent Agents” Agent technology:
foundations, applications, and markets, Springer-Verlag, 1998, pp. 3 — 28.

D. Helbing, I. Farkas, and T. Vicsekm “Simulatingndmical features of escape panic”,
Nature, n. 407, Sept., 2000, pp. 487 — 490.

D. Gianni, A. D’Ambrogio, and G. lazeolla, “A Layet Architecture for the Model-driven
Development of Distributed Simulator”, to appeaPimceedings of the First International
Conference on Smulation Tools and Techniques for Communications, Networks and
Systems (SIMUTOOLSO08), March, 2008, Marseille, France.

IEEE 1516, Standard for Modeling and Simulation ($)&High Level Architecture (HLA)
— Framework and Rules.

F. Bellifemine, G. Caire, and D. Greenwood, “Deyahg Multi-Agent Systems with
JADE", Wiley (2007).

D. Gianni, “Bringing Discrete Event Simulation Cepts into Multi Agent System”,
Proceeding of the 10" International Conference on Computer and Smulation (EuroSim-
UKO08), IEEE Computer Society.

Richard E. Nance, “The time and state relationships simulation modeling”,
Communications of the ACM, vol. 24, n. 4, April 1981, pp. 173-179.

E. Gelenbe, E. Seref, and Z. Xu, “Simulation witbaktning Agents”Proceedings of the
IEEE, vol. 89, n. 2, February, 2001, pp. 148 — 157.

T. Mens and M. Wermelinger, “Separation of concdanssoftware evolution”Journal of
Software Maintenance, vol. 14, n. 5, Sept, 2002, pp. 311 — 315.

D. Gianni and A. D’Ambrogio, “A Domain Specific Lgnage for the Definition of
Extended Queueing Networks Models”, to appear Piroceedings of the IASTED
International Conference on Software Engineering (SE 2008), February, 2008, Innsbruck,
Austria.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, DeS$igtierns: Elements of Reusable
Object-Oriented Software, Addison Wesley (2000).

D.G. Elms, A.H. Buchanan, J.W. Dusing, “ModellirgetFire Spread in BuildingsFire
Technology, vol. 20, n. 1, 1994, pp. 11 — 19.

J. Pauls, “Calculating Evacuation Time for Tall Blings”, Fire Safety Journal, n. 12,
1987, pp. 213 — 236.

Robocup Rescue, http://www.rescuesystem.org/rolresope/.

