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ABSTRACT

The training phase of indoor location fingerprinting has been tra-

ditionally performed by dedicated surveyors in a manner that is

time and labour intensive. Crowdsourcing process is more efficient,

but is impractical in public or commercial buildings because it re-

quires occasional location fix provided explicitly by the participant,

the availability of an indoor map for correlating the traces, and

the existence of landmarks throughout the area. Here, we address

these issues for the first time in this context by leveraging the

existence of stationary crowd that have timetabled roles, such

as desk-bound employees, lecturers and students. We propose a

scalable and effortless positioning system in the context of a pub-

lic/commercial building by using Wi-Fi sensor readings from its

stationary occupants’ smartphones combinedwith their timetabling

information. Most significantly, the entropy concept of informa-

tion theory is utilised to differentiate between good and spurious

measurements in a manner that does not rely on the existence of

known trusted users. Our analysis and experimental results show

that, regardless of such participants’ unpredictable behaviour, in-

cluding not following their timetabling information, hiding their

location or purposefully generatingwrong data, our entropy-based

filtering approach ensures the creation of a radio-map incremen-

tally from their measurements. Its effectiveness is validated exper-

imentally with two well-known machine learning algorithms.
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1 INTRODUCTION

A significant portion of a human’s daily life is spent indoors. The

emergence of smart ubiquitous applications generally requires ac-

cess to a human’s location information in such indoor environ-

ments too. Yet, despite having garnered tremendous interest in

the research community, there is still no de-facto standard for in-

door location determination (i.e., indoor localisation). Tradition-

ally, two families of indoor localisation research have been pur-

sued: one that requires specialised hardware (e.g., customised de-

vices) and infrastructure setup within the localisation area [16, 20],

and the other that utilises existing communication infrastructure

such as Wi-Fi [1, 22] or Bluetooth [8]. The first family can enable

centimetre-level accuracy with the help of specialised indoor in-

frastructure, but is extremely costly. Therefore, it is deemed im-

practical for a commercial or public indoor environment. Even though

the second family provides coarser localisation accuracy (2 to 3

meter or sometimes even room-level granularity), it can be more

practical and cost-effective for a public or commercial building fa-

cilitating location based services (LBSs), such as locating the near-

est store or distributing electronic coupons in proximity to vari-

ous business intelligence applications. Within this second family,

location fingerprinting is a particularly popular approach, which

involves one or more surveyors tasked with conducting a train-

ing phase by positioning themselves at several points of interest

and collecting the signal strength samples. This process is time-

consuming and labour intensive, hence suffers in terms of scalabil-

ity in commercial and public building scenarios. Also, the survey-

ors need to be aware of the geometry of the building for explicitly

indicating their position within an indoor map. Access to a map of

a public or commercial building comprising of multiple owners or

tenants can also be quite difficult for such purpose.

A newer trend of localisation techniques encourage implicit par-

ticipation of users in such premises to achieve the same goal, with

the main motivation of being the elimination of the surveyor’s

laborious training phase of fingerprinting. This approach gener-

ally involves crowdsourcing inertial sensor measurements (e.g., ac-

celerometer, gyroscope, compass, etc.) from people’s smartphones,

followed by the application of Simultaneous Localisation and Map-

ping (SLAM)with dead-reckoning, sensor fusion and filtering tech-

niques (e.g., Kalman) to compute the location [6, 17, 19]. These

crowd-sourced localisation approaches have been shown to be im-

practical for a public or commercial building [11] because of the

https://doi.org/10.1145/3360774.3360791
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requirement of an occasional location fix provided explicitly by

the participant, the availability of an indoor map for correlating

the traces, and the existence of landmarks throughout the area.

In this paper, we leverage the existence of a “stationary” crowd

in an indoor environment for localisation purpose. In a public or

commercial building, a number of people’s positions can be con-

sidered stationary during a certain time of the day, and this is also

supported by research findings such as [3]. For example, a salesper-

son in a shopping mall or a security guard of an office is expected

to be at a certain location during working hours. This is gener-

ally true for many desk-bound employees in such public or com-

mercial buildings. In a school or university, a student or teacher

operates according to timetabling information. For example, a stu-

dent might be scheduled to attend a tutorial session in room X at

2 pm on Tuesdays, and a teacher may deliver a lecture in room

Y at 10 am on Wednesdays. In our approach, the crowd-sourced

sensor readings (specifically Wi-Fi) from only these stationary per-

sonnel’s smartphones are correlated with their expected position

at certain times to formulate the location fingerprint. As a result,

the need of a surveyor together with the aforementioned issues of

the fingerprinting approaches are avoided.

The main contributions of the paper are as follows:

(1) We propose a scalable and effortless indoor positioning sys-

tem in the context of a public/commercial building by util-

ising its stationary occupants’ smartphones’ Wi-Fi sensor

readings combined with their timetabling information. We

argue that this implicit participatory location fingerprint-

ing radio-map creation will relieve the traditional laborious

training phase.

(2) While the stationary crowd need not be aware of the under-

lying location-based data collection, there must be a provi-

sion for incorporating only the good quality sensor readings

and filtering out spurious ones, for example if a user is not at

his/her expected position (for legitimate or even malicious

reasons). For this purpose, we utilise the entropy concept

of information theory to differentiate between good and bad

quality sensor measurements. To the best of our knowledge,

no work has used entropy in the creation of a fingerprinting

radio-map database before.

(3) Our approach has been experimentally validated using data

collected from a floor of our university campus. A few lec-

turer volunteers participated in building the fingerprinting

radio-map for the floor comprising of seven office rooms.

The rest of the paper is organised as follows. In Section 2, we

discuss our idea of using entropy to differentiate between good

and bad quality crowdsourced sensor measurements, and a result-

ing filtering algorithm for incorporating them into fingerprinting

radio-map. We provide a brief description of related work in Sec-

tion 3. In Section 4, we present our evaluation with experimental

findings. Finally, we discuss in Section 5 the conclusions drawn,

and our future work.

2 INFORMATION CONTENT IN

LOCALISATION

2.1 Location Fingerprinting Principle

Suppose there is a set of l distinct rooms/locations where the i th

room is denoted by level Li . According to the location fingerprint-

ing principle, each location is expected to be uniquely identified in

the signal domain. In other words, each fingerprint has one-to-one

mapping to the set of locations, L = {L1,L2, . . . ,Ll } where |L| = l .

Let this set of fingerprints, F be denoted by, F = {F1, F2, . . . , Fl }

where |F | = l . Traditionally, if n access points (APs) or anchors

are observed at a particular location, Li , the corresponding fin-

gerprint of Li in the signal domain can be represented as, Fi =

{F 1i , F
2
i , . . . , F

n
i }. The quantity, F

j
i can take the form of a simple av-

erage received signal strength (RSS) indication [1] to a histogram

representation of different signal levels [22] or even a much com-

plex probabilistic measure [12] of the observed RSSs from AP j,

where j ∈ {1, 2, . . . ,n}.

Majority of such location fingerprinting techniques utilise the

already available wireless communication infrastructure indoors

(e.g., Wi-Fi, Bluetooth) in order to build the radio-map, i.e., a collec-

tion of < Li , Fi > tuple obtained from the perceived RSS samples

where i ∈ {1, 2, . . . , l }. The conventional way of constructing such

radio-map was to laboriously survey the whole localisation area,

and collect the RSSs, i.e., Fi ’s at the points of interests Li ’s. The

location determination phase consists of first acquiring the finger-

print, by a client device at an “unknown” location. Subsequently,

this perceived measurement will be compared against the finger-

prints, Fi ’s of the stored radio-map < Li , Fi >, and the best match

will be returned as the corresponding location.

2.2 Probabilistic Localisation

Probabilistic localisation algorithms will return the most likely Li
among the set of training locations/rooms, L == {L1,L2, . . . ,Ll }

where |L| = l , given the perceived fingerprint, S = {S1, S2, . . . , Sm }.

The maximum a posteriori (MAP) algorithm is based upon the

Naive Bayes classifier that computes argmaxi P (Li |S ), where P (Li |S )

is expressed by the formula,

P (Li |S ) =
P (S |Li )P (Li )∑l
i=1 P (S |Li )P (Li )

. (1)

As commonly seen in the literature [12, 22], the perceived sig-

nal strength from a particular AP or anchor can be considered in-

dependent from other APs at a location. Subsequently, P (S |Li ) is

computed from the training radio-map database as,

P (S |Li ) =

m∏

j=1

P (S j |Li ). (2)

Without loss of generality, if all the locations/rooms are equally

likely, then, P (Li ) =
1
l
. By choosing the normalising constant as

∑l
i=1 P (S |Li ) = 1 in (1), the MAP can equivalently be written as,

argmax
i

P (Li |S ) = argmax
i

P (S |Li )

= argmax
i

m∏

j=1

P (S j |Li ). (3)
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2.3 Entropy and Information Content

Entropy expresses the measure of uncertainty. For a continuous

probability distribution, p (x ) of a random variable x , its entropy is

defined as, H = −
∫ ∞
−∞

p (x ) lnp (x )dx . Thus, minimising the max-

imum conditional probability distribution (3)’s entropy will cor-

respond to: given the true measurement, the computed location

estimation will be the least random. In other words, if we could re-

duce the uncertainty in RHS of (3), fingerprinting based algorithms

are likely to produce more accurate estimations. Our filtering al-

gorithm for crowdsourced measurements that we discuss in the

next section is motivated by this. In order to add a crowdsourced

measurement, we first compute the entropy of the resulting signal

strength’s probability distribution at the claimed location after its

incorporation, and compare it with its existing entropy.We only ac-

cept the measurement if the resulting entropy is smaller. In other

words, we discard any measurement, the incorporation of which

increases the uncertainty in (2)’s modelling.

In order to derive the cumulative entropy of all the observed

APs’ signal strength distributions at a particular location, we first

present the differential entropy expression considering only one.

In localisation literature, a single AP j’s signal strength distribu-

tion, P (S j |Li ) at a particular location, Li is generally assumed to

be normally distributed supported by experimental results [11, 12].

We also follow this claim. If P (S j |Li ) ∼ N (µ j ,σj ), then a normal

distribution’s differential entropy expression can be directly used

to represent the entropy of AP j’s signal strength distribution as fol-

lows, H = −
∫ ∞
−∞

(2πσ 2
j )
− 1

2 e

−(x−µj )
2

2σ 2
j ln [(2πσ 2

j )
− 1

2 e

−(x−µj )
2

2σ 2
j ]dx . By

simplifying the RHS using the identities,
∫ ∞
−∞

(2πσ 2
j )
− 1

2 e

−(x−µj )
2

2σ 2
j dx =

1, and
∫ ∞
−∞

(2πσ 2
j )
− 1

2 (x − µ j )
2e

−(x−µj )
2

2σ 2
j dx = σ 2

j , we obtain,

H =

1

2
ln (2πσ 2

j ) +
1

2
=

1

2
ln (2πeσ 2

j ). (4)

Using (4), the differential entropy of n-dimensional Gaussian

probability densities which is the entropy of RHS of (2) is com-

puted as,

Hn =
n

2
ln 2πe (σ 2

1σ
2
2 . . . σ

2
n )

1
n . (5)

This is shown in [15] by McEliece. A simplified derivation of (5)

can be provided based on the independence assumptions of the ob-

served signal strengths from the APs at a location [12, 22], and the

property that the differential entropy of n independent Gaussian

variables is the sum of their individual entropy values, i.e.,

Hn =

1

2
ln (2πeσ 2

1 ) +
1

2
ln (2πeσ 2

2 ) + . . . +
1

2
ln (2πeσ 2

n )

=

1

2
ln

{
(2πe )nσ 2

1σ
2
2 . . . σ

2
n

}

=

n

2
ln 2πe (σ 2

1σ
2
2 . . . σ

2
n )

1
n .

2.4 Filtering Approach Based on Entropy

We conceptualise a filtering technique for crowdsourced measure-

ments based on information content. Let us assume that incorpo-

rating a measurement,S received at a certain time, t results in the

differential entropy, H
′

n of the probability distribution of the ob-

served signal strength at the claimed location. If the original dif-

ferential entropy without this contribution is denoted by, Hn =

n
2 ln 2πe (σ 2

1σ
2
2 . . . σ

2
n )

1
n , then the overall filtering algorithm works

in two steps as follows: i) check whether a participant’s measure-

ment’s input time, t is within the time constraint ts ≤ t ≤ tf , where

ts and tf may be the starting and finishing time of his/her work-

ing hours, respectively, and ii) for all measurements satisfying the

time constraint mentioned in (i), compute H
′

n , and

< Li , S >=

accept, if H

′

n < Hn

reject, otherwise
(6)

The algorithm operates according to two constraints: i) a time

constraint, and ii) an entropy constraint based on our previous sec-

tion’s discussion. The time constraint follows the idea that if an

occupant’s submitted measurement comes at a different time other

than his/her expected location’s timing, it is not accepted. The en-

tropy constraint ensures that only the good quality crowdsourced

measurements will be incorporated but the inappropriate ones will

be discarded. In other words, only the measurements that reduces

the uncertainty of the signal strength distribution at the claimed

location inside the fingerprinting radio-map will be accepted.

Fig. 1 depicts our overall entropy based fingerprinting locali-

sation approach. The crowdsourced measurements from partici-

pants’ smartphones are collected and stored inside a central server.

Each submitted measurement takes the form of an expected loca-

tion at a time that may come from the participant’s timetabling

information, and the observedWi-Fi signal strengths from the per-

ceived APs during that time. The “Entropy-based filtering” entity

consists of the algorithm that we discuss in this section. Its detailed

algorithmic description that we implement is omitted for brevity. If

the measurement is passed by this filtering entity, it is then fed into

building the machine learning model’s fingerprinting radio-map

of the claimed location. During run-time or location determina-

tion phase, the collected measurement is used as input for the ma-

chine learning model’s reasoning to obtain the location. Note that,

for our evaluation of whether the filtering algorithm is efficient or

not, we stored all the measurements irrespective of whether it is

filtered or not. Hence, the “Entropy-based filtering” entity is fol-

lowed by the central server storage in Fig. 1. For practical deploy-

ments, it should generally appear before the operation of storing

the measurements once the effectiveness of the filtering algorithm

is proven. Consequently, only the good quality measurements will

be stored.

2.5 Accept and Reject Scenarios

In this section, we will discuss a series of accept and reject scenar-

ios for our filtering algorithm’s entropy constraint (6). We provide

proofs as to why measurements from certain scenarios should be

accepted or rejected with intuitive explanation. They will later be

supported by our experimental results in Section 4.

Lemma 2.1. If Fi = {F
k
i }, k = {1, 2, . . . ,n} denotes the existing

signal strength distribution of n APs at the claimed location, Li , the

measurement S = {S j }, ∀j ∈{1,2, ...,m } (j , k ) will always be rejected.
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Figure 1: Our entropy-based fingerprinting localisation approach

Proof. In this scenario, none of the claimed observed APs of

the measurement, S = {S1, S2, . . . , Sm } appears in the existing fin-

gerprint of the location, Li . The differential entropy after incorpo-

rating this measurement is represented as,

H
′

n = Hn+m

=

n +m

2
ln 2πe (σ 2

1σ
2
2 . . . σ

2
nσ

2
n+1 . . . σ

2
n+m )

1
n+m

=

n +m

2
ln 2πe (σ 2

1σ
2
2 . . . σ

2
n )

1
n+m
+

1

2
ln (σ 2

n+1 . . . σ
2
n+m )

=

n +m

2
ln 2πe (σ 2

1σ
2
2 . . . σ

2
n )

1
n −

m

2n
ln (σ 2

1σ
2
2 . . . σ

2
n )

+

1

2
ln (σ 2

n+1 . . . σ
2
n+m )

= Hn +
m

2n
ln (2πe )n (σ 2

1σ
2
2 . . . σ

2
n ) −

m

2n
ln (σ 2

1σ
2
2 . . . σ

2
n )

+

1

2
ln (σ 2

n+1 . . . σ
2
n+m )

= Hn +
m

2
ln (2πe ) +

1

2
ln (σ 2

n+1 . . . σ
2
n+m )

> Hn ,

Consequently, the inputmeasurement, S will be rejected by (6). �

Since the measurement may be produced in an automated and

arbitrary manner, it is unlikely to include any AP that was ob-

served at the same location inside the existing fingerprinting radio-

map. Therefore, this type of measurement should not be accepted.

Lemma 2.2. A measurement S = {S1, S2, . . . Sm } will be rejected

(accepted) if after incorporation, at least one of the AP’s signal strength’s

deviation (improvement) is more from its previously stored distribu-

tion, while the rest remains the same.

Proof. Suppose, the j th AP’s signal strength’s deviation is more

than its stored distribution, i.e., σ
′

j

2
> σ 2

j , while for the rest, they

remain the same, i.e., ∀i ∈{1,2, ...n }\{j } (σ
′

i

2
= σ 2

i ). Subsequently, it

can be proved that S will be rejected by (6) as follows,

H
′

n =

n

2
ln 2πe (σ 2

1σ
2
2 . . . σ

′

j

2
. . . σ 2

n )

1
n

>
n

2
ln 2πe (σ 2

1σ
2
2 . . . σ

2
j . . . σ

2
n )

1
n , since, lnx is a

monotonically increasing function for x > 0.

= Hn .

The accept scenario’s proof is exactly the same as above, where

σ
′

j

2
< σ 2

j which results in H
′

n < Hn . �

It was discussed in Section 2.3 that a measurement is accepted

only if it reduces a particular location’s overall signal strength

distribution’s uncertainty. Lemma 2.2 imposes a strict rejection

constraint upon the measurement which takes into consideration

that an intruder may snoop the signal strength, thereby gaining

knowledge about the signal map of that particular indoor location.

He/she may then submit tampered measurement to corrupt the fin-

gerprinting radio-map. Incorporation of it will likely result in de-

viation from the previously stored fingerprints. This is prevented

since the filtering approach rejects any measurement that causes

deterioration in regard to even one AP’s stored distribution while

the rest remains the same.

In the above, we discussed a specific scenario where the intruder

deliberately attempts to corrupt any particular AP’s or a group of

APs’ fingerprints inside the training radio-map assuming the rest

will remain the same. Next, we derive a generalised expression de-

noting the level of manipulation required by the intruder so that

his/her malicious measurement is accepted. For this to happen, it

can be shown using (5) that the impact of deterioration of a few

APs’ fingerprints should be offset by the improvement of a few oth-

ers through manipulation of the measurement perceived at the lo-

cation. Suppose amongn APs’ signal distributionmodel stored as a

location fingerprint, I of them were improved, J were deteriorated,

and the rest remained the same. In other words, ∀i ∈I (σ
′

i

2
< σ 2

i ),

∀j ∈J (σ
′

j

2
> σ 2

j ), and ∀k ∈{1,2, ...n }\{I∪J } (σ
′

k

2
= σ 2

k
).
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Lemma 2.3. The magnitude of allowed deviation of J APs’ stored

signal strengths’ distributions is bounded by the I APs’ achieved im-

provement by incorporating the same fingerprint, i.e.,

σ
′

I+1

2

σ 2
I+1

σ
′

I+2

2

σ 2
I+2

. . .
σ
′

I+J

2

σ 2
I+J

<
σ 2
1

σ
′

1

2

σ 2
2

σ
′

2

2 . . .
σ 2
I

σ
′

I

2 .

Proof. According to our algorithm, an input measurement is

accepted iff, H
′

n < Hn .

⇒
n

2
ln 2πe (σ

′

1

2
. . . σ

′

I

2
σ
′

I+1

2
. . . σI+J

′2
σ
′

I+J+1

2
. . . σ

′

n
2
)

1
n

<
n

2
ln 2πe (σ 2

1 . . . σ
2
I σ

2
I+1 . . . σ

2
I+Jσ

2
I+J+1 . . . σ

2
n )

1
n ,

⇒ (σ
′

1

2
. . . σ

′

I

2
σ
′

I+1

2
. . . σ

′

I+J

2
) < (σ 2

1 . . . σ
2
I σ

2
I+1 . . . σ

2
I+J ),

⇒
σ
′

I+1

2

σ 2
I+1

σ
′

I+2

2

σ 2
I+2

. . .

σ
′

I+J

2

σ 2
I+J

<

σ 2
1

σ
′

1
2

σ 2
2

σ
′

2
2
. . .

σ 2
I

σ
′

I

2
.

�

This implies that on one hand, it will require extensive knowl-

edge of the existing radio-map database on the intruder’s part, and

on the other hand, it will limit the magnitude of deviation from the

original fingerprint that can be caused. Additionally, even if the in-

truder was successful, the negative impact can be offset by subse-

quent good quality measurements by others at the same location.

Lemma 2.4. AmeasurementS = {S1, S2, . . . Sn , Sn+1}with a newer

(n+ 1)th AP’s reading at a location will be accepted under the follow-

ing condition, σ 2
n+1 <

1
2πe

σ 2
1

σ
′

1

2

σ 2
2

σ
′

2

2 . . .
σ 2
n

σ
′
n
2 .

Proof. Incorporating themeasurement S , the resulting entropy

is, Hn+1 =
n+1
2 ln 2πe (σ

′

1

2
σ
′

2

2
. . . σ

′

n
2
σn+1

2)
1

n+1
. S is accepted iff,

n + 1

2
ln 2πe (σ

′

1

2
. . . σ

′

n
2
σn+1

2)

1
n+1

<
n

2
ln 2πe (σ 2

1σ
2
2 . . . σ

2
n )

1
n ,

⇒ σ 2
n+1 <

1

2πe

σ 2
1

σ
′

1
2

σ 2
2

σ
′

2
2
. . .

σ 2
n

σ
′

n
2
. (7)

�

Eq. (7) gives an idea of the initial sample’s variance to be set

which is influenced by the improvement achieved from other n

APs’ distributions. For example, if σ 2
n+1 = 1, the required improve-

ment should be greater than 2πe for the measurement to be ac-

cepted. We need to carefully consider this scenario as it influences

howmissing APs from the stored distribution can be part of the ac-

tual fingerprint. Following (7), it is straightforward to show that for

m new APs to be integrated through a measurement, the improve-

ment required is greater than (2πe )m . This also ensures the crowd-

sourcing mechanism of creating fingerprinting radio-map evolves

over time while still being adaptable to environmental changes.

3 RELATED WORK

The field of crowdsourced indoor positioning has received consid-

erable attention over the last few years. Most of the related re-

search focuses on increasing accuracy by optimising the reasoning

approach, for example through ensemble learning [21], collabora-

tive sensing between nearby devices [13] or activity detection [23],

as well as on increasing efficiency [5] and reducing computational

complexity [24].

Here, our focus instead is on filtering out unreliable data at the

labelling stage. The handling of unreliable data labelling is a key

challenge not only in crowdsourced indoor positioning but more

generally in all participatory sensing applications. For example,

Barnwal et al. [2] have followed a Bayesian approach to enhanc-

ing the reliability of a vehicular participatory sensing system. The

rationale is that confidence can be estimated based on the condi-

tional probability of occurrence of a particular traffic event at a par-

ticular location given that supporting reports have been generated.

Also, Gisdakis, Giannetsos and Papadimitratos [9] have proposed a

comprehensive framework that is agnostic of the cause of a faulty

measurement. Each report is transformed into a probability mass,

so as to compute the hypothesis with the maximum belief; the be-

lief corresponding to this hypothesis; and the local conflict of the

probability mass, as per Dempster-Shafer Theory. Its output is a

partitioning into inliers and outliers, which is dependent on the

existence of an ‘honest majority’. The system then compares the

similarity between the inlying reports of two neighbouring units

with a two-sample Kolmogorov-Smirnov test. It uses a merging

and training phase, followed by an ensemble of machine learning

classifiers to characterise incoming reports as inliers or outliers,

and a concept drift detection module to detect changes in the sta-

tistical properties of the sensed phenomenon. The framework has

been evaluated on environmental monitoring.

Specifically for indoor positioning, Li et al. [14] have proposed

defences for different adversary models and attacks. Their logic

is that an initial set of measurements from trusted users can be

used to infer the trustworthiness of the fingerprints submitted by

unknown users. The authors have used two metrics to evaluate

trustworthiness and a corresponding iterative algorithm to build a

reliable fingerprint radio-map in the presence of unreliable reports.

The first metric is the temporal correlation within an RSS trace, as

fingerprints collected by different users tend to exhibit a similar

RSS trend (e.g., when the user walks towards an AP, the RSS in-

creases, and when the user walks away, it decreases). The second

is the spatial likelihood, which captures the spatial RSS correla-

tion between the fingerprints from the same position in different

traces. However, the defences proposed assume that there are al-

ways some users that can be trusted, such as the employees in a

shopping mall, and this may not always be the case. For example,

an employee may have reasons to want to hide their location at a

specific point in time.

Cheng et al. [4] have proposed a technique for addressing the

challenge of missing values in participatory sensing. The key idea

is to employ the spatio temporal compressive technique originally

proposed in [18] to reconstruct the sensory data given an incom-

plete and partially inaccurate dataset if the sensory data being re-

constructed exhibit low-rank structure and spatio-temporal prop-

erties. One of the two case studies evaluated is crowdsourcedWi-Fi

fingerprinting. 10 users equipped with smartphones were asked to

walk through a university campus for two hours. Their technique
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Figure 2: Performance of filtering approach while incorporating different types of participants’ measurements

Figure 3: The four types of participants considered

involves inferring the smartphones’ proximity based on other mul-

tidimensional sensor readings, and to derive a corresponding spa-

tial constraint. Thiswas feasible because the users are non-stationary

and specifically tasked with the work of fingerprinting, so that a

sensor node could obtain substitute sensor readings from the next

time slot.

Zhou et al. [25] have proposed a minimax conditional entropy

principle to infer ground truth from noisy crowdsourced labels.

Based on this, they derived a unique probabilistic labelling model

jointly parameterised by worker ability and item difficulty. This is

the only known example of work in the literature that has pro-

posed to benefit from entropy for identifying unreliable crowd-

sourced labels. However, it has not been evaluated on dataset re-

lated to location fingerprinting.

The above solutions proposed in the literature for handling un-

reliable data in participatory sensing either have not been designed

and evaluated for indoor positioning applications or assume that

volunteers are taskedwithwalking through areas with the purpose

to collect series of spatio-temporal data that can be cross-checked

for their veracity, or that there exist users whose measurements

can always be considered as trusted. In our work, we do not need

to record users’ movement across different locations other than

their destination as expected by their pre-defined timetable, and

we also do not assume the trustworthiness of a select set of users.

Next, we present the experimental evaluation of our approach.

4 EVALUATION

4.1 Experimental Setup and Participant Groups

We collected measurements from seven rooms of a building of our

university campus where four rooms are on one side and the rest

are on the other side divided by a corridor. Each room has the di-

mension of 7.85m×3.8m.We involved lecturer volunteers who are

the users of those rooms. Their timetabling information were pre-

loaded in a smartphone application that was given to them. The

smartphone’s application perceives the Wi-Fi signal strength, and

correlates it with the location retrieved from the timetabling infor-

mation by the software running inside the particular volunteer’s

smartphone, and sends it to a central server. All measurements sat-

isfying the time constraint as discussed in Section 2.4 are stored.

The crowdsourcedmeasurements do not require the participants

to explicitly indicate their locations where they are taken, and they

can be oblivious of the data collection procedure. In order to pro-

vide supporting results for the proofs of Section 2.5, we first discuss

four different types of participants based on the scenarios (Fig. 3),

and then describe how we emulate their measurements:

i) Regular: participants who remain at their expected locations at

the time their devices submit the measurements,

ii) Irregular: participants who are not at their timetabled locations

during submission,

iii) Random: adversarial participants who wish to hide their loca-

tion by generating automated or arbitrary measurements that do

not correlate with the indoor environment’s geometry and com-

munication infrastructure, and

iv) Rogue: adversarial participants who intentionally try to cor-

rupt the radio-map database through tampered measurements.

All the collected measurements in our experimental setup are

considered to be input by regular participants. The measurements

from the other participants are emulated by manipulating a regu-

lar participant’s measurement as follows. Suppose, < Li , Fi , S >

represent the <location, stored fingerprint, measurement> at the

claimed location Li where i ∈ {1, 2, . . . l }. An irregular partici-

pant’s measurement < Lj , S > is emulated by selecting a loca-

tion Lj from a uniform distribution of the available locations, {Lj },

j ∈ {1, 2, . . . l } \ {i}, that is different from Li . In order to create a

random participant’s measurement, we first select the number of

arbitrary APs, x fromU (1,m) whereU (.) denotes a uniform distri-

bution over the range. We chosem = n where n is the number of

APs observed at Li , and∀j ∈{1,2, ...x } (j < {1, 2, . . .n}). Then, each of

the x signal strengths is generated from U (RSSmin,RSSmax). In our

experiments, we set RSSmin = −90 dBm, and RSSmin = −30 dBm. To
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(d) Rogue.

Figure 4: 25%-75% split between already existing and incorporating different types of participants’ measurements

emulate a rogue participant’s measurement, we first pick a num-

ber x form U (1,n), and then choose a set of x indices again from

U (1,n). Then, each j ∈ {1, 2, . . . x } AP’s signal strength is selected

from aGaussian distributionN (S j ,σ 2) where we change σ 2 to con-

trol the deviation of noise.

4.2 Results and Discussion

125measurements were recorded from our volunteers across seven

rooms. We randomly divided them into 5 sets of 25 measurements

each. 5-fold cross validation was used where 4 sets (100 measure-

ments in total) were used as fingerprinting radio-map (training)

in each fold, and the remaining (25 measurements) were used as

testing samples.

With the first set of experiments, we aim to show the effec-

tiveness of our filtering approach discussed in Section 2. For this

purpose, we assume that there are already some existing measure-

ments inside the fingerprinting radio-map.We consider three cases

where the training samples were separated between already ex-

isting and the participants’ contributions. 25%–75%, 50%–50% and

75%–25% depict the separation between already existing and par-

ticipants’ contributions, respectively. Five different training sam-

ple points, 20, 40, 60, 80 and 100 are considered for each separation.

The different participants’ measurements weremodelled following

the previous section’s discussion. Fig. 2 is constructed as the aver-

age of 10 experimental runswith 95% confidence interval. Each run

constitutes an instance of 5-fold cross validation. Our filtering ap-

proach’s effectiveness can be seen from the results of Fig. 2. 100%

of the Random participants’ measurements were filtered. This di-

rectly follows Lemma 2.1. Another observation is that the filtering

approach’s performance improves as the sample size increases con-

cerning both Irregular and Rogue measurements. This can be per-

ceived for all three separations. This is intuitive since a larger sam-

ple size is expected tomodel the fingerprinting radio-mapwith less

uncertainty which in turn will improve the filtering performance.

Furthermore, the incorporation of regular measurements remain

steady across various sample sizes and different separations. This

is an important characteristics, because the filtering approach en-

sures good quality measurements are accepted, and also, it is not
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(d) Rogue.

Figure 5: 50%-50% split between already existing and incorporating different types of participants’ measurements

overly restrictive. This follows the property of Lemma 2.2 and 2.3.

One may argue that why 100% regular measurements were not ac-

cepted by the filtering approach. It is a well-known phenomenon in

localisation literature that even at the same location, the perceived

signal strength may vary due to environmental factors, device het-

erogeneity, and also the time of the day [11]. This justifies a propor-

tion of regular measurements being filtered. We argue that as long

as a steady stream of good quality of regular measurements are en-

sured to be incorporated, the fingerprinting radio-map will evolve

over time. This is the case as can be seen in Fig. 2. With 75% ex-

isting training samples, the least number of regular measurements

are discarded which is again intuitive since the filtering approach’s

modelling is based upon a larger sample size compared to the 25%

and 50% ones.

For the second set of experiments, we retained the same separa-

tion across similar training sample points as the previous one. Two

well-known machine learning algorithms such as Nearest Neigh-

bour (NN) and maximum a posteriori (MAP) are then applied. For

comparison, we considered both ’with filter’ and ’without filter’

training dataset, where one results from applying the filtering ap-

proach, and the other consists of all the measurements with com-

plete trust. The testing dataset comprises of 25% measurements in

each fold of 5-fold cross validation as described in the beginning

of this section. The results of the two algorithms’ are presented in

Fig. 4, 5, and 6. In general, for all combinations, both algorithms’

localisation accuracy is better for ’with filter’ variant than its ’with-

out filter’ counterpart. This is evident more when the sample size

increases. This directly follows from our previous experiment’s re-

sults too since the filtering approach performed better with larger

sample size, and also for 75%–25% separation which consequently

gave rise to a more accurate radio-map for the machine learning al-

gorithms. This leads to another observation that irrespective of the

different types of participants’ measurements, the localisation ac-

curacy reached similar levels for both algorithms (see 100 training

sample points’ results for the four different types of participants’

measurements of Fig. 6). Also, we expect the results based on Regu-

lar participants’ measurements for ’with filter’ variant should gen-

erally follow the trend of its ’without filter’ counterpart which is
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Figure 6: 75%-25% split between already existing and incorporating different types of participants’ measurements

generally observed in Fig. 4(a), 5(a) and 6(a). These findings val-

idates our claim that our entropy based fingerprinting approach

can result in an effortless and scalable IPS for a public or commer-

cial building.

We conclude this sectionwith a fewmore details.While it can be

argued that NN is another form ofMAP, we have utilised determin-

istic average RSS as NN’s fingerprint, and applied Euclidean dis-

tance between fingerprints for location estimation decision. MAP

is implemented following Section 2.2’s model. This might be the

reason for inferior performance of MAP compared to NN in our

experiments, where MAP generally requires a significant number

of samples for its fingerprint modelling. The number of samples

per room (≈ 18) in our experiments was relatively small. Both al-

gorithms were implemented with efficient data structure, and have

run-time complexity of O (nl ) where l is the number of locations,

and n is the dimension of the fingerprint at each location. NN pro-

vided better localisation accuracy with almost 85% correct detec-

tion of rooms. We observed more than 300 different Wi-FI APs

in total within just one premise during our data collection pro-

cess. Our university wireless network providers are only consid-

ered which is a natural localisation choice for any particular com-

merical or public building that reduces this number to 125. How-

ever, only on-demand availability for energy conservation purpose,

heterogeneity of mobile devices with varying capability to scan the

nearby APs, and spatio-temporal factor result in variability in the

number of APs observed at a certain location. This can give rise to

missing RSS phenomenon of fingerprinting techniques [7, 10] that

we perceive in our radio-map as well. We believe this also has ad-

verse impact on both the algorithms’ offered localisation accuracy

since we adopt an elementary imputation practice that substitutes

the missing value with the minimum RSS (e.g., -96 dBm). There are

multiple research work as in [7, 10] that try to resolve this miss-

ing RSS phenomenon, which we consider to be out of scope for

our work. Because, our crowdsourced fingerprinting approach’s

benefit is independent of the choice of the machine learning algo-

rithm, and any other improvements that they may be incorporated.

This claim follows from our observation that in all our experiments,
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the ’with filter’ variant is generally better than its ’without filter’

counterpart. We contend that by adopting an appropriate missing

value resolution techinque, and considering more advanced ma-

chine learning algorithms is likely to offer better localisation ac-

curary compared to the two simplistic ones that we considered

here. For the presented results concerning the Rogue participants,

we fixed the Gaussian noise deviation, σ of its modelling (see Sec-

tion 4.1) to be 20. We observed that for lower values than 20, it per-

forms almost like the Regular participants’ contributions that were

even better. This is quite intuitive looking at Fig. 3 since lower σ

will shift the participants’ level of adversarial tendency from high

to low. For higher values of σ , more measurements are required

to achieve the similar accuracy as the presented ones since higher

proportion of them are filtered by our algorithm. Those results are

omitted for brevity.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a scalable and effortless fingerprinting-

based IPS in the context of a public/commercial building by lever-

aging the existence of a “stationary” crowd, and correlating their

smartphones’ Wi-Fi sensor readings with their timetabling infor-

mation. Both our analysis and experimental results have shown

that, regardless of such participants’ unpredictable behaviour, i.e.,

not following their timetabling information, our entropy based fil-

tering approach ensures the creation of fingerprinting radio-map

incrementally from their measurements. We considered four types

of participants’ behaviours to support our claim. The localisation

performance of two machine learning algorithms was evaluated

based on the created fingerprinting radio-map which has shown

our approach’s effectiveness.

By having provided a practical means for introducing partici-

patory location fingerprinting through the stationary crowd of a

commercial or public building, we anticipate the generation of sev-

eral future work directions. For example, we have assumed a few

measurements to exist inside the fingerprinting radio-map in all

scenarios (i.e., the 25%-75%, 50%-50% and 75%-25% separations) of

our filtering approach’s experimental evaluation. The creation of

radio-map from scratch with no existing fingerprint will require

modifications to our current filtering approach so that the few ini-

tial measurements are integrated only after careful consideration,

i.e., imposing additional constraints. More experiments with dif-

ferent public or commercial building setup and size other than a

university campus can be conducted to establish applicability in

very large indoor areas and involving large crowd. Also, the radio-

map created following our approach could easily be applied to train

different families of machine learning models, and subsequently

compare their localisation performance with finer granularity. Fi-

nally, a rigorous theoretical framework can be pursued to show

that the entropy based filtering approach can incrementally create

the training radio-map. In this paper, experimental validation was

provided together with the relevant lemmas with proofs.
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